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Abstract. We have studied the behavior of the energy gap of the 1D AF spin- 1
2

XXZ model in a transverse
magnetic field (h) using the exact diagonalization technique. The ground state phase diagram consists of
two spin-flop and paramagnetic phases. Using a modified finite-size scaling approach, we have computed
the critical exponent of the energy gap in the vicinity of the critical transverse field hc(∆). Our numerical
results confirm that the continuous phase transition from the spin-flop phase to the paramagnetic one is
in the universality class of the Ising model in the transverse field (ITF). By applying conformal estimates
of a small perturbation (h � 1), we have also justified our numerical results.

PACS. 75.10.Jm Quantized spin models – 75.10.Pq Spin chain models

1 Introduction

The 1D antiferromagnetic (AF) XXZ model in an external
magnetic field has attracted much interest recently. The
Hamiltonian of this model on a periodic chain of N sites,
in a magnetic field is

H =
N∑

i=1

[J(Sx
i Sx

i+1 + Sy
i Sy

i+1 + ∆Sz
i Sz

i+1) + hSδ
i ], (1)

where J > 0 is the exchange coupling, ∆ is the anisotropy
in the z direction and h is proportional to the longitudinal
(δ = z) or transverse (δ = x, y) field. In the absence of
an external magnetic field (h = 0), the exact solution
is given by the Bethe ansatz [1]. In the regions ∆ > 1
and ∆ ≤ −1, there is a gap in the excitation spectrum
and the ground state is in the Néel and the ferromagnetic
phase respectively. In the region −1 < ∆ ≤ 1, the ground
state is in the gapless spin-fluid phase with a power-low
decay of correlations. The effect of a uniform longitudinal
magnetic field is studied in great detail [1]. In this case, in
the region −1 < ∆ ≤ 1 the spectrum of the model remains
gapless up to a saturation value of the longitudinal field
h = J(1 + ∆).

Application of a transverse magnetic field on the 1D
AF XXZ model is very interesting from the experimen-
tal [2,3] and theoretical [4–13] points of view. Adding a
transverse field to the 1D AF XXZ model in the region
−1 < ∆ < 1, develops a gap. The ground state then has
the long-range Néel order in the y direction (the spin-flop
phase). At a special field value hcl =

√
2J(1 + ∆) the

ground state is known exactly to be of the classical Néel
type [4,5]. The gap vanishes at the critical field hc(∆),
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where the transition to the paramagnetic phase (fully po-
larized phase in the field direction) occurs. Thus, in the
case of the anisotropic AF XXZ chain (−1 < ∆ < 1),
there are two phase transitions in the plane of the trans-
verse magnetic field h vs. the anisotropic parameter ∆ (see
Fig. 1 of Ref. [7]). The first one (at hc = 0) corresponds
to the transition from the gapless spin-fluid phase to the
gapped spin-flop phase. The second one (at hc(∆)) rep-
resents the transition from the gapped spin-flop phase to
the fully polarized phase.

Using quantum renormalization group (QRG) it is
shown [6] that the anisotropy is not relevant and the uni-
versality class of the transition at hc(∆) is governed by
the ITF model. Exact diagonalization data also supported
the QRG results by calculating the spin structure factor
and the magnetization of finite chain sizes. Using scaling
estimations, the critical indices of the energy gap in the
vicinity of the critical lines are obtained in reference [7].
It is shown that the critical exponent of the energy gap in
the region −1 < ∆ < 1 at the phase transition between
the spin-fluid phase and the spin-flop phase (at hc = 0) is
a function of the anisotropy parameter ∆

G(h) ∼ h
1

1−θ/2 , − 1 < ∆ < 0

G(h) ∼ h
2

4−θ−1/θ , 0 < ∆ < 1 (2)

where θ is

θ = 1 − arccos(∆)
π

. (3)

A recent exact diagonalization approach [13,14] has shown
very good agreement for the critical exponent of the en-
ergy gap in the vicinity of the critical field hc = 0 and
the whole range of the anisotropy parameter −1 < ∆ < 1.
In this numerical work, the ∆-dependence of the critical



286 The European Physical Journal B

exponent of the energy gap is computed using the relation
between the divergence of the leading term in the pertur-
bation expansion and the scaling behavior of the energy
gap. Using a modified version of this approach we have
also computed the critical exponent of the energy gap in
the vicinity of the critical line ∆ = −1 in good agreement
with the spin-wave approach [15].

In this work we study the quantum phase transition
between the spin-flop and fully polarized state at the fi-
nite critical field hc(∆). However, two problems arise if
we are interested in using this numerical approach in the
vicinity of the critical field hc(∆). First, the exact value of
the critical field hc(∆) is not known. Second, the critical
field in the finite size chains (the pseudocritical field) is a
function of N and different from the exact value hc(∆). We
should note that we face the same problem in most quan-
tum phase transitions [16,17]. Thus, the main question
is, “How can we find the critical exponent of the energy
gap in this situation?” To answer this question, we have
applied a modified finite-size scaling approach, which is
applicable to more general cases.

In this paper, we present our numerical results ob-
tained for the low-energy states of the 1D AF XXZ model
in the vicinity of the critical field hc(∆). Using the exact
diagonalization technique, we calculate the energy gap as
a function of the applied transverse field. In Section 2, we
define the pseudocritical field of a finite system. We de-
scribe two known methods for computing the critical field
hc(∆) from finite systems, results. Using these methods
we can solve the first problem. In Section 3, first, we show
that the behavior of the energy gap in the vicinity of the
pseudocritical field hc(N, ∆) is perturbative. For this rea-
son, we apply a perturbative approach [13] to study the
scaling behavior of the gap in the vicinity of the critical
transverse field hc(∆). Finally, the summary and discus-
sion are presented in Section 4.

2 Pseudocritical field

In this section we consider the behavior of the model in
the vicinity of the transition line hc(∆). Since, all types
of long-range order except the long-range order along the
transverse magnetic field must vanish at some value of
the field, therefore the transition line hc(∆) must exist. In
the region h < hc(∆), the ground state is in the spin-flop
phase. To use conformal estimations for finding the critical
exponent of the energy gap in the vicinity of the critical
line hc(∆), it is convenient to rewrite the Hamiltonian (1)
in the following form

H = H0 + V

H0 =
N∑

i=1

[J(Sx
i Sx

i+1 + Sy
i Sy

i+1 + ∆Sz
i Sz

i+1) + hc(∆)Sx
i ]

V = (h − hc(∆))
N∑

i=1

Sx
j , (4)

where (h−hc(∆)) is very small. Therefore, for a small per-
turbation V , we can use conformal estimates. The long dis-

tance asymptote of the correlation function of the model
on the critical line hc(∆) is obtained [7] as

〈Sx
j Sx

j+n〉 ∝
1
n2

. (5)

By investigating the perturbed action for the model and
performing an infinitesimal renormalization group calcu-
lation with a scale λ (x = λx′ and t = λt′) and expressing
λ = ξ

ξ′ = G′
G , one can show that the energy gap scales as

G(h) ∼ (h − hc(∆))ε, ε = 1, (6)

which shows that the critical exponent of the energy gap
ε in the vicinity of the critical line hc(∆) is independent
of the anisotropy parameter ∆ and equal to one. Since
the transition to the paramagnetic phase occurs at the
critical field hc(∆), we expect the critical exponent of the
energy gap to be equal to one. This linear behavior is
in good agreement with the exponent being equal to one,
characteristic of the ITF universality class [18]. The above
consideration is valid also for the case h < hc(∆) with the
same critical exponent for the energy gap.

The critical exponent of the energy gap can also ob-
served from the numerical calculations of finite size sys-
tems. We have used the modified Lanczos method [19]
for solving the finite chains exactly. The modified Lanczos
method is the best procedure to obtain the excited ener-
gies with the same accuracy as the ground state one. The
Lanczos method and the related recursion method [20–23]
have emerged as one of the most important computational
procedures, mainly when a few extreme eigenvalues are de-
sired. The energy gap as a function of the chain length N
and the transverse field h is defined as

G(N, h) = Em(N, h) − E0(N, h), (7)

where E0 is the ground state energy and Em is in gen-
eral, the first or second excited state. Since the first ex-
cited state and the ground state form a twofold-degenerate
ground state in the thermodynamic limit, then E1 − E0

vanishes [7] and the energy gap will be equal to E2 − E0.
In the Hamiltonian formulation, the critical point of

an infinite system is defined as the value of the magnetic
field h at which the gap G(h) vanishes as in equation (6).
Using the Lanczos method we can compute G(N, h) which
approaches G(h) when N is large.

We have implemented the modified Lanczos algorithm
on finite size chains (N = 12, 14, ..., 24) using periodic
boundary conditions to calculate the energy gap as a func-
tion of the transverse magnetic field h. We have computed
the energy gap for different values of the anisotropy pa-
rameter −1 < ∆ < 1 and the chain lengths. In Figure 1
we have plotted the h-dependence of the energy gap of
the chain sizes N = 12, 16, 20 at the anisotropy parame-
ter ∆ = −0.25. It can be seen that there are numerous
level crossings between the states, which lead to incom-
mensurate effects in the behavior of the spin structure
factors. All crossings disappear at h > hc. Because a finite
system cannot have a phase transition, therefore G(N, h)
does not vanish at any finite value of the transverse field
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Fig. 1. The value of the energy gap G(N, h) versus the trans-
verse magnetic field for the anisotropy parameter ∆ = −0.25.
The results reported are for different chain lengths N =
12, 16, 20.

h. We suggest, nevertheless, that one can extract hc(∆)
from G(N, h) by the following argument.

As it can be seen from Figure 1, the energy gap of a
finite chain near hcl decreases rapidly. Therefore we define
the pseudocritical field of a finite system hc(N, ∆) as the
value of transverse field h at which the gap G(N, h) is
minimized and approaches hc(∆) as N −→ ∞. Using this
procedure we have found the hc(N, ∆) for different sizes
N = 12, 14, ..., 24 and the anisotropy parameter −1 <
∆ < 1. We expect that the approach being characterized
by the shift exponent α is defined by

lim
N→∞

hc(N, ∆) = hc(∆) +
B

Nα
. (8)

We have plotted in Figure 2, hc(N, ∆) versus 1/Nα for dif-
ferent values of the anisotropy parameter ∆. The results
have been plotted for different sizes N = 12, 14, ..., 22 to
derive hc(∆). The best fit to our data is obtained with
α = 2.0 for the anisotropy parameter ∆ = 0. Our nu-
merical results show that the exponent α depends on ∆.
But the deviation of α = 2.0 is small. Since our numeri-
cal results are limited to small sizes up to Nmax = 24, it
becomes difficult to recognize the exact ∆-dependence of
the exponent α.

There is also another approach to find the critical field
hc(∆) which is based on the static spin structure factor.
The static spin structure factor at momentum q is de-
fined as

Sδδ(q) =
∑

r

〈Sδ
0Sδ

r 〉, δ = x, y, z. (9)

It is known that the spin structure factors give us a deeper
insight into the characteristics of the ground state. We
have plotted Syy(q = π) versus N for different transverse
fields. We expect as long as h > hc(∆), Syy(q = π) grows
slowly and shows saturation at a finite value when N −→
∞. On the other hand, a superlinear behavior versus N

Fig. 2. The value of the Pseudocritical field hc(N, h) versus the
parameter 1/Nα for different values of the anisotropy param-
eter ∆. The best fit to our data is obtained using equation (8)
with α = 2.0.

Table 1. The classical field hcl(∆), the critical field hc(∆)
which is obtained from equation (8) and the critical field h′

c(∆)
which is obtained from the N-dependence of the spin structure
factor [Syy(q = π)] for different values of anisotropy parameter
−1 < ∆ < 1.

∆ hcl(∆) hc(∆) h′
c(∆)

0.50 1.732 1.736 1.70
0.25 1.581 1.597 1.55
0.0 1.414 1.451 1.45

−0.25 1.224 1.294 1.25
−0.50 1.000 1.121 1.10

shows divergence of the structure factor for h < hc(∆).
This corresponds to the ordered spin-flop phase. Using
this procedure we also computed the critical field h′

c(∆).
The results have been presented in Table 1. In this table,
we have listed hcl(∆), the critical field hc(∆) which is
obtained from equation (8), and the critical field h′

c(∆)
computed from the N-dependence of the spin structure
factor [Syy(q = π)] for different values of the anisotropy
parameter ∆. Our numerical results show that the value
of the critical field hc(∆) is in good agreement with h′

c(∆)
and also is larger than hcl(∆), which is expected.

3 Finite-size scaling approach

Now, let us introduce a modified version of our previous
finite-size scaling approach [13,14]. This modified version
is also applicable in the cases where the critical field is
not known exactly and is different from the finite size re-
sults. The presence of the gap can be characterized by the
following expression,

G(N, h) ∼ N−1f(x), (10)

where x = N(h − hc(N, ∆))ε is the scaling variable and
f(x) is the scaling function. Multiplying both side of above
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equation by N we get

lim
N→∞ (x�1)

NG(N, h) ∼ N(h − hc(∆))ε, (11)

which shows that the large-x behavior of NG(N, h) is lin-
ear in N(h − hc(∆))ε where the scaling exponent of the
energy gap is ε. On the other hand, since in using the
Lanczos method we are limited to considering the maxi-
mum value of the spins, N = 24, the value of x cannot be
increased. Thus, we have to find the scaling behavior of
the gap from the small-x regime. According to our com-
putations for N ≤ 24, the small-x regime is equivalent
to very small values of the parameter (h − hc(N, ∆)). In
this case the energy gap of the finite size system basically
represents the perturbative behavior [13]

G(N, h) = A(0)(N) + A(1)(N)(h − hc(N, ∆))

+A(2)(N)(h − hc(N, ∆))2 + ... (12)

The effect of higher-order terms can be neglected for (h−
hc(N, ∆)) ≤ 0.01 to a very good approximation. We have
checked the first coefficient in the perturbation expansion
(A(0)(N)) as a function of N . Our numerical results show
that, this coefficient behaves as A(0)(N) ∼ 1

N , which is
expected. Now let us rewrite equation (10) as [24]

G(N, h) ∼ N−1f [(N)1/ε(h − hc(N, ∆))]. (13)

This implies

∂mG

∂hm
|h=hc(N,∆)= N−1+ m

ε × const., (14)

where m is the order of the leading term in the perturba-
tion expansion. Using equation (12) we obtain

A(m)(N) ∝ N−1+ m
ε . (15)

Now, if we consider the large-N behavior of A(m)(N) as

lim
N→∞

A(m)(N) � a1N
β , (16)

we find that the real critical exponent of the energy gap
is related to the β-exponent as,

ε =
m

1 + β
. (17)

The above arguments suggested that we look for the large-
N behavior of A(m)(N). To do this, in the first step we
plotted in Figure 3 the energy gap G(N, hc(N, ∆)) ver-
sus h [0.001 ≤ (h − hc(N, ∆)) ≤ 0.01] for a fixed size
N = 24 and the anisotropy parameter ∆ = 0. The best fit
to our data is obtained with γ = 2.2 (G(N, hc(N, ∆)) ∝
(h − hc(N, ∆))γ), which shows that the first nonzero
correction in the perturbation expansion is second-order
(m = 2). We have also implemented our procedure for
different values of the sizes N = 12, 16, 20 and found the
same results for m as we expected. In the second step, we
fitted the results of the energy gap G(N, hc(N, ∆)) to the

Fig. 3. The value of the energy gap G(N, h) versus the trans-
verse magnetic field close to critical field hc(N, ∆) for the
anisotropy parameter ∆ = 0. The results reported are for a
chain length N = 24.

Fig. 4. The value of the scaling function A(2)(N) versus the
chain length N = 12, 14, ..., 24 for the anisotropy parameter
∆ = 0. The best fit is obtained by using equation (16) with
β = 1.00 ± 0.07.

polynomials for h close to hc(N, ∆) up to m = 2. Using
this procedure we found the coefficient of the second-order
correction perturbation, A(2)(N), as a function of N . Fi-
nally we plotted in Figure 4 the function A(2)(N) versus N
for the value of the anisotropy parameter ∆ = 0. The re-
sults have been plotted for different sizes N = 12, 14, ..., 24
to derive the β-exponent defined in equation (16). We
found the best data fit for β = 1.00 ± 0.07. Therefore,
ε = 1.00 ± 0.07 which shows very good agreement with
equation (6). Moreover, our data for h < hc(N, ∆), lead
to ε = 1.0 ± 0.1, as we expected. We have extended our
numerical computations to consider other values of the
anisotropy parameter ∆. The results have been presented
in Table 2. We have listed the resulting ε which is obtained
from equation (17), and the result of the theoretical ap-
proach εth for different values of the anisotropy parameter
∆. Our numerical results show very good agreement with



S. Mahdavifar: Gap-behavior in the vicinity of a saturation transverse field 289

Table 2. The critical gap exponent ε which is obtained from
equation (17) and theoretical gap exponent εth for different
values of the anisotropy parameter −1 < ∆ < 1.

∆ ε εth

0.50 1.13 1.00
0.25 1.15 1.00
0.0 1.00 1.00

−0.25 0.99 1.00
−0.50 0.99 1.00

the exponent derived from the theoretical point of view,
equation (6). The slight deviation in the region ∆ > 0 is
the result of numerical computations and also limitation
on the size of the system.

4 Conclusions

To summarize, we have studied the behavior of the energy
gap of the 1D AF spin- 1

2 XXZ model in a transverse mag-
netic field h. We have implemented the modified Lanczos
method to obtain the excited state energies with the same
accuracy as the ground state one. Adding a transverse field
to the 1D AF XXZ model in the region −1 < ∆ < 1, de-
velops a gap. There are two phase transitions in the plane
of the transverse magnetic field h vs. the anisotropic pa-
rameter ∆ (in the region −1 < ∆ < 1). The first one
(at hc = 0) corresponds to the transition from the gapless
spin-fluid phase to the gapped spin-flop phase. The second
one (at hc(∆)) represents the transition from the gapped
spin-flop phase to the fully polarized phase. In our previ-
ous work [13], we introduced an approach to obtain the
real critical exponent of the energy gap from the finite size
results in the vicinity of the critical field hc = 0. However,
two problems arise if we are interested in using this nu-
merical approach in the vicinity of the critical field hc(∆).
First, the exact value of the critical field hc(∆) is not
known. Second, the critical field in the finite size chains is
a function of N and different from the exact value hc(∆).

In this paper, we have shown that the modified ap-
proach is applicable to more general cases where the crit-
ical point is not exactly known and is different from the
finite size results. First, we have defined the pseudocriti-
cal field of a finite system as hc(N, ∆). To find the true
critical field (hc(∆)), we have plotted the best fit to the
data of the function hc(N, ∆) by using equation (8).

Then, we have shown that the behavior of the en-
ergy gap of the finite size chains (G(N, h)) in the vicin-
ity of the pseudocritical field hc(N, ∆) is perturbative.
For this reason, we have applied a modified version of
our previous perturbative approach [13] to study the scal-
ing behavior of the gap in the vicinity of hc(∆). Accord-
ing to this approach, the scaling variable is defined as
x = N(h − hc(N, ∆)). The small-x regime is equivalent
to very small values of the parameter (h − hc(N, ∆)). In
this case we have written a perturbative expansion for
the energy gap in the vicinity of the pseudocritical field
hc(N, ∆). To find the correct exponent of the energy gap

in the small-x regime, one should plot the best fit to the
data of the scaling function A(m)(N), which is the coeffi-
cient of the m-order perturbation expansion. Finally, we
have found a relation between the divergence of the lead-
ing term A(m)(N) in the perturbative expansion and the
scaling behavior of the energy gap as equation (17). Using
this approach we have found that the critical exponent of
the energy gap in the vicinity of the critical line hc(∆) is
independent of the anisotropy parameter ∆ and equal to
one. This linear behavior shows that the continuous phase
transition from the spin-flop phase to a paramagnetic one
is in the universality class of the ITF model. By applying
the conformal estimates of the small perturbation (h 	 1),
we have also justified our results theoretically (Eq. (6)).
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